
J .  Fluid Mech. (1973), vol. 58, part 2, pp. 403-414 

Priwted in. Great BI.itain 
403 

Turbulent flow with wavy permeable boundaries 
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Department of Civil Engineering, Massachusetts Institute of Technology 

(Received 14 December 1972) 

The effects of a wavy permeable boundary on turbulent flow are investigated 
theoretically and experimentally, mainly in ternis of the pressure distribution 
along the wavy boundary and the friction factors. A simplified theoretical analysis 
based on potential flow theory and a linear Darcy equation shows that the 
perturbations of the flow field have a phase shift relative to the wavy surface 
and that, owing t o  this phase shift, there results a net form resistance on the 
wavy surface. Experiments were conducted in two pipelines with different sizes 
of granular material lining the inside of the pipe walls. The diameter of the 
porous conduits varied sinusoidally. The experimental results show that there 
is a phase shift between the boundary wave form and the pressure distribution 
and that friction factors increase with Reynolds number even though the flow 
is within the normal fully rough regime. 

1. Introduction 
For decades, hydraulic engineers have sought predictions of flow resistance 

in alluvial channels under various flow conditions (e.g. Vanoni & Brooks 1957; 
Simons & Richardson 1960; Raudkivi 1967, etc.). The complexity of this 
phenomenon is largely related to the different types of bed configurations which 
can occur in alluvial charinels under various flow conditions. These bed forms 
result from the interaction between the turbulent fluid motion of the stream and 
the alluvial channel bed. Plow turbulence is the major feature of the interaction 
and it contributes to the sediment motion and the formation of bed forms. Both 
the mean flow and turbulence in the porous bed may influence the sediment 
motion, the flow resistance and the turbulence structure of the main flow over it. 

Eckert, Diaguila & Donoughe (1955), Yuan & Brogren (1961) and Olsen & 
Eckert (1966) have investigated turbulent flow over porous walls with air 
injection or suction through the boundary. Munoz Goma & Gelhar (1968) and 
Chu & Gelhar (1972) have observed unusually high turbulence levels in pipe flow 
with porous walls. They also found that the friction factors in the porous pipes 
increased continuously with Reynolds number even though the flow was within 
the normal fully rough regime. Lovera & Kennedy (1969) also found friction 
factors increasing with Reynolds number for flat-bed flows in sand channels. 
Many studies have dealt with turbulent flow over wavy boundaries, mainly in 
relation to wind-wave generation and the formation of bed forms in alluvial 
channels. For turbulent flow over rigid wavy impermeable boundaries, Motzfeld 
(1937), Hsu (1968) and Hsu & Kennedy (1971) observed a slight phase shift of 
the wall pressure distributions relative to the sinusoidal wavy surface. Benjamin 
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(1959) studied analytically the problem of shear flow over wavy impermeable 
boundaries and predicted a phase shift between the pressure distributions and 
the boundary wave form. Such phase shifts between the flow properties and the 
boundary geometry have been found to play an important role in the develop- 
ment of the wavy interfaces in growing wind-generated water waves (Miles 1957), 
or the formation of various bed forms in alluvial channels (Kennedy 1963). 

The objective here is to evaluate the interaction between the mean flow in 
a wavy permeable boundary and the external flow as reflected in boundary 
pressure distributions and flow resistance. A theoretical analysis based on poten- 
tial flow theory and the linear Darcy equation was developed first to indicate 
some major characteristics of the flow over wavy permeable boundaries. Then 
experiments were designed according to the information derived from the analysis. 
The experimental results, including the mean pressure gradient, the friction 
factor and the wall pressure distributions along the wavy boundary, are pre- 
sented and discussed. 

2. Theoretical analysis 
Both two-dimensional and axisymmetric flows are analysed, using potential 

flow theory and the linear Darcy equation to investigate effects of a wavy 
permeable boundary on the mean flow over it. 

For an initially uniform flow passing over a two-dimensional sinusoidal 
permeable boundary y = ~ ( x )  = asinax of small amplitude, there will be some 
small perturbation in the flow field. The velocity field V in the main stream (y 7) 
will be 

where U is the undisturbed velocity of the mean flow, u and w are the perturbation 
velocity components and q5 is the velocity potential for the perturbed flow field, 
For the perturbed flow field inside the porous media, based on the linear Darcy 

v = ( U  + u, v) = (U  + aqyax, &#lay), (1) 

equation, the specific discharge is 
I I  q = (u ,zI ) = --V(p'+pgy) = 

P 
when expressed in terms of the velocity potential 

9' = - ( V P )  (PI +PW) .  (3) 
Here Ic is the intrinsic permeability of the porous medium, p is the viscosity, 
p' is the pressure, p is the fluid density and g is the acceleration due to gravity. 
Using the continuity equations V . V = 0 and V. q = 0 for an incompressible fluid, 

V2$ = 0 for y 3 7, (4) 

V2$' = 0 for y < 7, (5) 

u ,v - tO  as y-fco, (6 a) 

u',d .+ 0 as y-f-00, (6b) 

p = p '  at y = y ,  (6 4 
V . n = q . n  at y = y ,  n=V(y-v ) .  ( 6 4  

with the boundary conditions 
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Here the continuity of pressure and mass flux at the wavy boundary are 
used. 

For small amplitudes a < L (L  = 2n-/a), the boundary conditions on the 
wavy boundary y = 7 can be approximated by using Taylor series expansions 
such that the conditions can, to lowest order in aa, be evaluated a t  y = 0 instead 
of at y = 7. To lowest order in aa the pressure condition, using the Bernoulli 
equation for the flow outside the boundary, reduces to 

and the flux condition becomes 
p&/k = pU &$/ax at y = 0 (7a )  

a' a'' - ~ a a c o s a x  at y = 0. 
aY aY 

To the lowest order in aa, the solutions are as follows: 

sin (ax - 6) euYl 
UaR 

$ 1  = 
(1 + R2)+ 

where R = Uak/v is a Reynolds number based on the intrinsic permeability k 
of the porous media and the wavenumber a, and 6 = tan-lR. The streamline 
pattern of this flow is shown in figure 1. A kind of separation zone occurs above 
the porous boundary. 

The major features here are that all the O(aa) perturbation quantities have 
the same phase shift angle 6 relative to the boundary wave form and that this 
phase shift 6 depends on the free-stream velocity U, the wavenumber a, the 
permeability k and the kinematic viscosity v. If the boundary is impermeable, 
i.e. k: = 0, Iihere will be no phase shift in the perturbation quantities, i.e. 6 = 0. 
Owing to this phase shift in the boundary pressure, there will be a net form drag 
force acting on the wavy boundary. The pressure at  the wavy surface y = 7 is, 
for small aa, approximated by 

pU%a 
P'Pg7 = - (1 + R2)4 sin (ax- 6, 

and the average form drag force per unit length is 

The form drag friction factor f ' I ,  defined by rp = Q f "pU2, is given by 

4 ( c ~ a ) ~  
f" = sin 6. 

(1+R2)) 

The friction factor f" will increase with the phase shift 6, and 6 will increase 
with the mean free-stream velocity U for a fixed wavy permeable boundary, 
i.e. aa and k are constants. 

For the case of uniform flow through a circular pipe with a sinusoidal perme- 
able boundary 7 = ri-asinax, the formulation is similar to that for the 
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FIGURE 1. Streamline pattern for 6 = &r and CIQ. = 0.10 (values of the stream function 

normalized by Ua are shown). 

two-dimensional case. In  cylindrical co-ordinates (r ,  x), the governing equations 
are V2$ = 0 for 7 3 r 3 0, (13) 

V2$' = 0 for ro 2 r > 7 (14) 

a$/& = 0 at r = 0, (154  

a$'/ar = 0 at Y = ro, (15 b )  

and the boundary conditions are, with aa -g 1, 

where ri is the radius to the mean level of the wavy boundary and ro is the radius 
to the solid wall. 

The solutions axe, for small aa, 
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Mean Number Total Bead Perme- 
Wavy a L aa = diameter of length size ability 2r0 
pipe (em) (em) %a/L 2ri (em) waves (em) (mm) k (em2) (em) 

1 0.483 30.48 0.10 4.445 9.5 289.6 3.05 1-47x lo-* 7.32 
2 0.483 30-48 0.10 4.445 9.5 289.6 1.83 4-41 x 7.32 

TABLE 1. Conduit dimensions and media properties 

where 

8, = tan+ R,. (18b)  

The pressure field is expressed in terms of the dynamic pressures pd  and p i .  
I0, 11, KO and K ,  are modified Bessel functions. The form drag friction factor is 

4(au)2 l0(clTi) 
f" = sins,. 

(1 + B;)* I1(clYi) 

The major features for the axisymmetric case are the same as those for the 
two-dimensional case. Only the magnitudes of these perturbation quantities differ 
by certain constant factors depending upon the geometrical parameters. Higher 
order solutions can be found by a similar method. They have smaller amplitude 
than the O ( m )  solutions, and since they involve only higher harmonics sin nax 
and ~osnax ,  the higher order perturbed pressure fields do not produce a net 
form drag on the wavy boundary. 

3. Experiments 
Two circular conduits, lined with a layer of granular permeable material 

which varies sinusoidally, were used in these air flow experiments. In  the design 
of the wavy conduits, it was necessary for the maximum amplitude-to-wave- 
length ratio or clu to be such that no flow separation was produced and that the 
number of waves was sufficient to generate a quasi-uniform flow. Hsu (1968) 
and Hsu & Kennedy (1971) reported that, for an impermeable wavy boundary, 
the flow is free of separation for u/L < & and that five wavelengths are sufficient 
for the establishment of quasi-uniform flow. In  this study, au = 0.10 (u/L 2 2%) 
was chosen and both pipelines were 9.5 wavelengths long. 

In  the selection of porous material, the requirements to be satisfied were that 
(a)  the mean flow be in the range of turbulent flow, (a) the effects due to the wavy 
permeable boundaries on the mean flow, in terms of the perturbation variations 
of the wall pressure, be measurable and ( c )  the velocity inside the porous media 
be low enough such that linear Darcy equation would be a,pplicable. The per- 
meable conduits were constructed using an axisymmetric internal form of 
sinusoidal shape which was placed concentrically in a circular pipe. The annular 
space was then filled with expanded polystyrene beads with an epoxy binder. 
The conduit dimensions and media properties used in these experiments are 
shown in table 1. The permeability was measured in a permeameter which 
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FIGURE 2. Mean pressure distribution. For the first wavy pipe: v, U = 8.19 m/s; 
0, U = 12.30m/s; A, U = 24*28m/s. For the second pipe: v, U = 9.47mls; a, 
U = 1@09m/s; A, U = 31.66m/s. 

consisted of a segment half a wavelength long of the porous conduit with an 
impermeable inner lining. 

For pressure measurement in the test section, consisting of the last wavelength, 
19 piezometric openings 1.59mm in diameter were drilled in the pipe wall per 
wavelength. The mean pressure gradient was measured from the pressure dif- 
ference between pairs of piezometric holes one wavelength apart starting from 
the first section throughout the whole pipeline. The distributions of the wall 
pressure were determined through the detailed measurements of the relative 
pressure of every piezometric hole of the test section. The pressure differences 
were measured with a micromanometer. For the boundary configuration used 
in these experiments it can be shown, using the solution far flow in the boundary, 
that the pressure at  the surface of the wavy boundary is practically the same as 
that at the base of the porous layer at the pipe wall. 

4. Results 
The mean pressure gradients measured in both wavy pipes are shown in figure 2. 

A constant mean pressure gradient developed for both wavy pipes, thus in- 
dicating that the pressure field had reached a quasi-uniform state. From the 
mean pressure gradient dpldx, a gross friction factor f was determined from 
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FIGURE 3. Total friction factor f in the porous wavy pipes. v,first wavy pipe (2r,/,/k = 370) ; 
a, second wavy pipe (2r,l Jk = 670). 

where U is the average velocity in the wavy pipe with a mean diameter D. The 
results of the friction factor are shown in figure 3. They all indicated a drastic 
increase of friction factors with Reynolds number. The friction factors in the 
first wavy pipe, which had a lining of larger beads and higher permeability, were 
of larger magnitude than those in the second wavy pipe. 

The same trends of continuous increase in friction factors with Reynolds num- 
ber were observed in measurements of turbulent flow over flat porous boundaries 
by Munoe Goma & Gelhar (1968) and Chu & Gelhar (1972). However, for the 
present case of turbulent flow over wavy permeable boundaries, the rates of in- 
crease of friction factors were much higher than those observed for flat boundaries. 

The distributions of the perturbation wall pressure for different mean flow 
velocities in the wavy pipes are shown in figures 4 (a)-(c). It can be seen that the 
pressure distributions for all velocities in both pipes do have a certain phase 
shift relative to the wavy surface as expected from theoretical analysis; however, 
they a11 involve complex wave forms. 

Since the pressure distributions are all periodic with the same wavelength 
as the wavy surface, they can be decomposed into a series of Fourier com- 
ponents. The Fourier coefficients were evaluated by using numerical integration 
methods, Typical results of the first and second harmonic components are shown 
in figure 4. Only the first harmonic component, which has the same waveIength 
as the wavy boundary, will contribute an average form drag acting on the wavy 
surface. All higher harmonic components, being orthogonal to the first harmonic, 
give no contribution. However, the effects of nonlinear interaction may affect 
the magnitude of the phase shift and the amplitude of the first harmonic 
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FIGURES 4 (a )  and ( b ) .  For legend see facing page. 

component and contribute to the form resistance indirectly. Table 2 and figure 4 
show the comparison of the measured first harmonic components and theoretical 
wall pressure distributions predicted by (17b) .  It can be seen that the measured 
pressure distributions in both wavy pipes have significantly larger phase shifts 
than the predicted values, especially at  the lower velocities. The observed phase 
shift increases with mean velocity but the amplitude of the measured pressure 
distribution is practically independent of velocity. 

It has been shown in figure 3 that the friction factor f increases with Reynolds 
number in both wavy pipes. These observations are within the range where it 
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FIGURE 4. First and second harmonic components of the measured wall pressure. A, 
measured data; - -, first harmonic; - - - , second harmonic; - , theoretical wall 
pressure. (a) Run 1-3, U = 8-18 m/s. (b) Run 1-8, U = 28-11 m/s. (c)  Run 2-1, U = 9-47mls. 

1-10 
1-1 1 
1-3 
1-5 
1-9 
1-6 
1-7 
1-8 

Mean 
velocity 
u (mls) 

3.19 
4.50 
8.19 

16.00 
16.04 
20.21 
24.28 
28-11 

Measured p 
Reynolds (first harmonic) 
number & 

UDlv R,  Amplitude S, (deg) 

(i) First wavy pipe k = 1.47 x lo-' em2 

9.35 x lo3 0.1049 0.4191 30.92 
1.06 x lo4 0.1480 0,4064 35.51 
2.40 x lo4 0,2689 0.3988 42.87 
4.68 x lo4 0.5253 0.4172 46.10 
4.70 x lo4 0.5267 0.4106 46.30 
5-92 x lo4 0-6636 0.4273 46.55 
7-11 x lo4 0.7971 0-4230 47-25 
8-23 x lo4 0-9228 0.4284 46.92 

0.4269 5.99 
0.4213 8.42 
0.4144 15.05 
0.3799 27.71 
0.3688 27-78 
0.3576 33-57 
0.3356 38.56 
0.3154 42-70 

(ii) Second wavy pipe k = 4.41 x cm2 

2-6 5-37 1 . 5 7 ~  lo4 0.0531 0.4461 21.43 0.4285 3.04 
2-1 9.47 2 . 7 7 ~  lo4 0.0938 0.4600 27.93 0.4273 5-36 

2-3 16.09 4.71 x lo4 0.1593 0.4322 34.00 0.4238 9-05 
2-5 24.44 7 . 1 5 ~  lo4 0.2420 0.4264 36.70 0.4171 13.60 

2-2 12.33 3.61 x 10' 0.1221 0.4231 32.66 0.4262 6.96 

2-4 31.66 9 . 2 7 ~  lo4 0.3135 0.4152 37.22 0.4095 17.40 

D = mean diameter of the wavy pipe = 4.445 om, v = kinematic viscosity, R, is the 
parameter defined in (18a) .  

TABLE 2. Comparison of measured and theoretical wall pressure 
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FIGURE 5. Friction factors f‘ and f” in the wavy pipes. First pipe: 0, f’; A, f”; 
-, predicted f“. Second pipe : , f ’ ; A, f” ; - -, predicted f“. 

v “ 1  

is usually found that the friction factors are independent of Reynolds number 
for fully rough flows over impermeable boundaries. 

The gross friction factor f can be divided into two parts: 

f =f‘+f”, (21) 

where f’ is associated with the surface resistance due to the flat porous boundary 
and f It is due to the form drag resulting from the pressure difference between the 
front and lee sides of the wavy surface. By definition, f It can be calculated from 
the pressure distribution along the wave permeable surface as follows: 

and then f’ can be found by subtracting f It from f. The results for f’ and f ” for 
both wavy pipes are shown in figure 5 .  It can be seen that (a) both f’ and f “ 
increase with Reynolds number and the magnitude off ” is larger than that off’ 
in both porous wavy pipes, and ( b )  the magnitudes off and f It in the first wavy 
pipe, which has a larger permeability, are all larger than the corresponding values 
in the second pipe. Since the amplitude of the measured pressure (see table 2 )  
does not vary much, the form drag friction factor f ” is mainly dependent upon 
the magnitude of the phase shift. The values off’’ predicted by theoretical 
analysis are lower than the measured f ” because the predicted phase shifts, based 
on potential flow theory and the linear Darcy equation, are lower than the 
measured values. 
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FIGURE 6. Comparison of friction factorf'. ( R  = hydraulic radius; D,, = mean grain size.) 
Chu & Gelhar (1972), flat boundaries: 0, 2ri/ , /k = 48, granular; 0, 2ri/Jk = 960, 
granular; a, 2ri/Jk = 230, porous foam; v, 2ri/Jk = 700, porous foam. Present results, 
wavy permeable boundaries: 0,  2ril,/k = 370; +, 2ri/,/k = 670. 

Munoz Goma & Gelhar (1968) and Chu & Gelhar (1972) observed that the 
friction factor f' for turbulent flow over flat porous boundaries increases con- 
tinuously with Reynolds number even though the flow is well within the usual 
fully rough regime. The comparison of the measured f' in this study with those 
observed by above investigators is shown in figure 6. It is seen that they show 
similar trends of increase with Reynolds number. Lovera & Kennedy (1969) 
found that the friction increases continuously with Reynolds number for flat- 
bed flows in sand channels as shown in figure 6. In contrast, Vanoni & Hwang 
(1967) reported, from their measurements of open-channel flow over a rigid 
(and apparently impermeable) sand bed with ripples, that, for a constant flow 
depth, the bed friction factor is independent of Reynolds number. 

5. Discussion 
The series of experiments for pipe flow demonstrate the effects of boundary 

permeability in flow over undular bed forms. The phase shift between the 
bed form and the pressure distribution increases with increasing boundary 
permeability. Friction factors are larger for the pipe with larger boundary per- 
meability. The gross friction factor as well as those associated with both form 
and surface drag increase with increasing Reynolds number. A potential flow 
analysis of flow over an undular permeabIe boundary shows trends similar to 
those observed. The computed amplitude of the pressure perturbation is similar 
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t o  that observed but the phase shift between the bed form and the pressure dis- 
tribution is generally lower than that observed especially at the lower velocities. 
Predicted form drag friction factors, being primarily dependent on the phase 
shift, are also lower than those observed. 

A primary weakness of this simple potential flow model is the omission of 
shear in the mean flow. An explicit evaluation of this shear effect is not possible 
but some estimates using a typical turbulent velocity profile in the analysis by 
Benjamin (1959) for an impermeable wavy boundary indicate that phase shifts 
of the magnitude of the observed differences are possible. Nonlinear resistance 
effects in the porous boundary may also have affected the results for the larger 
permeability at high vclocities. 

In  general, both the analysis and the experiments show that the mean flow 
within a wavy permeable boundary can have a significant influence on the ex- 
ternal flow field and hence the form resistance. These boundary permeability 
effects should be evaluated in analyses of alluvial channel bed forms. 

This research was sponsored by the National Science Foundation under 
Grant No. GK31774X. 
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